
N94- 25370

DEVELOPMENT OF PROGRAMMABLE

ARTIFICIAL NEURAL NETWORKS

Final Report

NASA/ASEE Summer Faculty Fellowship Program-1993

Johnson Space Center

Prepared By:

Academic Rank:

University & Department

NASA/JSC

Directorate:

Division:

Branch:

JSC Colleague:

Date Submitted:

Contract Number:

Andrew J. Meade, Jr., Ph.D

Assistant Professor

Rice University

Department of Mechanical Engineering
and Materials Science

Houston, Texas 77251-1892

Information Systems

Information Technology

Software Technology

Robert O. Shelton, Ph.D

September 30, 1993

NGT-44-001-800

Approved By:

Date Approved:

21-0

DEVELOPMENT OF PROGRAMMABLE

ARTIFICIAL NEURAL NETWORKS

Final Report

NASA/ASEE Summer Faculty Fellowship Program-1993

Johnson Space Center

Prepared By:

Academic Rank:

University & Department

NASA/JSC

Directorate:

Division:

Branch:

JSC Colleague:

Date Submitted:

Contract Number:

Andrew J. Meade, Jr.,Ph.D

AssistantProfessor

Rice University

Department of Mechanical Engineering

and Materials Science

Houston, Texas 77251-1892

Information Systems

Information Technology

Software Technology

Robert O. Shelton, Ph.D

September 30, 1993

NGT-44-001-800

21-1

ABSTRACT

Conventionally programmed digital computers can process numbers with great speed

and precision, but do not easily recognize patterns or imprecise or contradictory data. In-

stead of being programmed in the conventional sense, artificial neural networks are capable

of self-learning through exposure to repeated examples. However, the training of an ANN

can be a time consuming and unpredictable process.

A general method is being developed by the author to mate the adaptability of the ANN

with the speed and precision of the digital computer. This method has been successful in

building feedforward networks that can approximate functions and their partial derivatives

from examples in a single iteration. The general method also allows the formation of

feedforward networks that can approximate the solution to nonlinear ordinary and partial

differential equations to desired accuracy without the need of examples. It is believed that

continued research will produce artificial neural networks that can be used with confidence

in practical scientific computing and engineering applications.

21-2

INTRODUCTION

Neural networks have proven to be versatile tools for accomplishing what could be termed

higher order tasks such as pattern recognition, classification, and visual processing. How-

ever, conventional wisdom has held that networks are unsuited for use in more purely

computational tasks, such as mathematical modelling and physical analysis of engineering
systems. Certainly the biological underpinnings of the neural network concept suggest that
networks would perform best at tasks at which biological systems excel, and worse or not
at all at other tasks.

Contrary to popular opinion the author believes that continued research into the ap-
proximation capabilities of networks will enable the neural network paradigm, with all of

its advantages in behavior and adaptability, to be mated to the more purely computational

paradigms of mathematically oriented scientific programming and analysis. Additionally,

it is felt that the thorough investigation of network approximation capabilities will benefit

the network field and connectionism in general.

In a field as conceptually difficult as the study of artificial neural networks, it is best to

start investigation with supervised learning, test the established premises, and alter them

to circumvent pitfalls in implimentation.

FUNCTION APPROXIMATION

Learning as Function Approximation

Central to the author's research approach is the view that supervised learning in artificial

neural networks is equivalent to the problem of approximating a multivariate function and

that learning should be able to be explained by approximation theory. Approximation the-

ory deals with the problem of approximating or interpolating a multivariate function. This

approach has been considered by other researchers in the field of ANNs [1]-[4]. However,
the author extends this assumption of function approximation by assuming that ANNs
can model discontinuous multivariate functions and should be at least as accurate and

numerically efficient as existing computational techniques used in science and engineering.

Also, ANN behavior and adaptation difficulties, from supervised learning to machine vision,
should be amenable to the standard error analysis techniques used in numerical analysis

Function Approximation In Engineering

There are three classes of tools used in science and engineering for the analysis of systems:

1. analytical methods, which include the formation of equations that model the be-
havior of systems and the analytic solution of those equations.

2. computational methods, which involve the simulation of system behavior by the
numerical solution of the governing equations.

3. experiments, which involve the investigation of physical phenomena and the gath-
ering of data to validate analytical models and numerical simulations.

21-3

In a general sense analytical and computational methods and experiments can be con-

sidered to be forms of function approximation. The governing equations derived from ana-

lytical methods are a compact representation of the functions that model some particular

phenomena observed in experiments. Computational techniques are used to approximate

the function or functions that satisfy the governing equations. The graphs and tables made

from experiments are representations of the functions that underlie observed physical phe-

nomena.

Computational Methods

In the wake of the computer revolution in scientific applications, a large number of com-

putational techniques have emerged. Also, particular methods have assumed prominent

positions in certain areas of application. For example, finite element methods are used

almost exclusively for solving structural problems; spectral methods are becoming the pre-

ferred approach to global atmospheric modelling; and the use of finite difference methods

is nearly universal in simulating fluid and thermal systems.

Each computational method has its own set of advantages and disadvantages depending

on the characteristic of the application. These popular and apparently unrelated techniques

are firmly entrenched in computer codes used every day by practicing scientists and engi-

neers. Often the formal numerical training provided the scientist and engineer reinforces

the divisions between the various computational methods available. However, Fletcher [6]

has demonstrated that each of these numerical methods are in fact particular aspects of a

more general approach known as the method of weighted residuals [7].

PROGRAMMABLE ARTIFICIAL NEURAL NETWORKS

It is the objective of the author's research program to demonstrate that artificial neural net-

work behavior from supervised learning to machine vision can be derived from the method

of weighted residuals. This would link ANNs with the relatively mature and established

field of computational mechanics, extend ANN capabilities, and help in transforming ANN

applications from an art to a science. This may also advance research in our understanding

of biological neural systems.
If we are to assume that ANNs are as valid as established computational techniques,

then ANNs should be evaluated in the same manner as are computational techniques.

The first step in evaluating the capabilities of a new numerical method, is to apply it to

the solution of algebraic and ordinary and partial differential equations of known behavior.

This same approach can be used for ANNs since the solution of algebraic and differential

equations can be viewed as the approximation of a function that must satisfy the equation

in question subjected to boundary and/or initial conditions.

Applying an ANN to the solution of an algebraic or differential equation effectively

uncouples the influences of the quality of data samples, network architecture, and transfer

functions from the network approximation performance. The solution of equations also

allows us to study the influence of constraining the connection weights. The most immediate

benefit in this approach would be the construction of networks that can approximate the

solution to desired equations without the need for examples. This would be of value in

21--4

engineering applications since considerable effort may be saved if the equations governing a

physical process can be directly incorporated into the neural network architecture without

the need of examples, thereby shortening or even eliminating the learning phase.

This approach may also lead to the construction of network training routines that are

faster and more accurate than those presently in use [8], [9]. In addition, progress made in

this network programming approach should provide the research community insight into the

working of networks for associative memory, classification, and machine vision applications.

Approach

The MWR approach has been taken by the author using the hard limit [10] as the transfer

function. Interesting results have been produced and are presented to demonstrate the
validity of the approach.

It can be argued that the supervised training of a feedforward network is a problem in

function approximation using unconstrained optimization. In this sense, the task of the

optimization scheme is to find the proper combination of connection weights between the

processing elements, operating with specific transfer functions, so that the network mini-

mizes the error between the network output and the desired output. Therefore, the training

of a network possesses all of the problems one associates with unconstrained optimization

such as avoiding local minima in search of the global minimum.

The most obvious remedy to this problem is to constrain the optimization while pre-

serving the approximation capability of the network. Our task then is to form constraints

between the weights so that the values of the weights may be determined with computa-
tional efficiency.

Constraint of Weights Between the Input and Hidden Layer

A univariate function u(x) can be represented by a feedforward network (Fig. 1) with a

single hidden layer, and a single input and output node using a linear transfer function, as
follows:

N

u(x)=_'](_i(_i)-Fs,)wi, _,=_,x-t-0, for i=l,...,JV (1)
i----I

Each hidden processing element is indexed by the subscript i, where N is the total number

of hidden processing elements. The variable z is the value of the input and _i represents

the nonlinear transfer function for the i th hidden processing element. The coefficients w_,

cr_ and 0_ are the values of the connection weights between the hidden and output layers,

the input and hidden layers, and the bias node and hidden layer, respectively. The role

of the remaining set of coefficients, si, will be explained shortly. Equation (1) indicates

that we must determine the value of 4N coefficients to approximate a function with the

feedforward architecture. Our objective in constraining the weights is to decrease the
number of unknown coeffÉcients.

The formulation of Eq. (1) is similar to that given by Cybenko [11]. However, _ will be

modified in a manner similar to the radial basis technique. Notice that to provide extended

dynamic range, this formulation assumes that the input and output processing elements

21-5

use linear transfer functions. However,this formulation also allows the use of nonlinear

transfer functions in the output node.

We will constrain the weights 0i in the following manner. Discretize the domain (ft) of

the input variable into N - 1 intervals. Each interval is bracketed by the values _i and _i+1

where _i < _+1 and i - 1, ..., N. The value of N is equal to the total number of hidden

processing elements. We will use the following equation to constrain 0i:

O_ - -ai_ for i - 1, ..., N

so that

_i = ai (z - _i) for i = 1, ..., N.

Notice that by constraining each bias weight (0i) in this manner, _i = 0 for the i th processing

element when x = _i. The variables zi are similar to the "centers" used in the radial basis

function literature [12],[13].

For our analysis we will use a piecewise continuous polynomial approximation to the

hyperbolic tangent (Eq. (2)) known as the hard limit which is illustrated in Fig. 2.

@i(_i)=_i-1 where _i=2(x-xi) for :_i<z<xi+l
_i+1 - _ - -

Oi(_i)=-I for z_<zi and _i(_i)= +1 for _i+1 _<z. (2)

Therefore, for the piecewise polynomial transfer function we can constrain the input

weights al using Eq. (2).

2
for _i < z < _i+1

ai= xi+l--xi

Notice then, that transfer functions from each processing element are distributed along the

z axis in the domain of interest fL Each function is "centered" at the respective values of

_i (Fig. 3).

Equation (1) can now be seen as a weighted sum representation of the function u(x).

One can think of the transfer functions as being interpolation functions distributed along

the transformed z axis. Each interpolation function, and its coefficient si, is multiplied by

its respective weight, wi, and summed to approximate a desired curve.

Constraint of Weights Between the Hidden and Output Layer

It can now be shown that the role of the coefficients s_ in Eq. (1) is to add or subtract

constant values from the respective transfer function. This effectively moves the transfer

function above or below the z axis (Fig. 4). Equation (1) may be rewritten as:

N N

u(z) = _ ¢, (_,) w, + a where a = _ siw, (3)
i----1 /----1

21-6

The coefficient _r acts as the connection weight between the second bias and the output
node (Fig. 1).

One final constraint we impose on the output weights in that to/= -wi+l. This requires

that we use an even number of processing elements. The final constraint acts to convert

the hard limits from global interpolation functions into local interpolation functions.

We have now constrained all of the parameters for the single input and single output

feedforward network and have decreased the number of unknowns from 4N (ah Oi, 8i, and

wi) to N/2 + 1 (wi and a). What remains now is to determine the output weights and the

second bias weight so as to approximate not only the desired functional relationship, but

also the derivatives of the function. This is done using the method of weighted residuals

(MWR). More specifically, the Bubnov-Galerkin and Petrov-Galerkin methods.

ORDINARY DIFFERENTIAL EQUATIONS

Determination of Output Weights: Method of Weighted Residuals

To illustrate the method we will determine the output weights and bias (wi and or) needed

to approximate the solution to a linear first order differential equation, using only the

equation and the initial condition [14].

A feedforward network of one input and output node and a single hidden layer is

constructed to approximate the solution to the following equation:

du

_x-u -0 (4)

with the boundary condition u(0) = 0. The exact solution is:

_exa_t _- e _

Substituting Eq. (1) into Eq. (4) we have:

du _ d_)i(_i) w, N- u = .- + = o.
i--I iffil

(5)

In this example we will set _r to zero. Notice that Eq. (5) is only satisfied if the

nontrivial set wl is exactly correct.

If we use random values for wl the right hand side would be nonzero and act as a

measure of the error. This error is also known as the equation residual (e). We may obtain

an acceptable approximation if we force the weighted residual to zero over the domain of

interest, _.

Jo /o)fl, Cx) (e)dz--O- fk(x) d@i(_i) (6)

where k = 1, ..., N and fk(z) is referred to as the weighting function or test function. The

approach shown by Eq. (6) is known as the method of weighted residuals.

21-7

Since linearly independent relationships are needed to solve for the coefficients wi, it is

clear that fk must be a set of linearly independent functions. The choice of the weighting

functions correspond to different solution techniques such as the subdomain, collocation,

least square, and the Galerkin methods [6]. For this investigation we will use a modification

of the Galerkin approach or more specifically the Bubnov-Galerkin method [15]. This

approach requires that fk be chosen from the same family of functions as the transfer

functions, that is,

fk(x) = for k = 1,..., N. (7)

Except for the change in the index from i to k, ek(_k) is described by the hat function.

So Eq. (6) may be rewritten as

_ i) dz wi- _ ek(_k)¢i(_i) dz wi = 0 for k = 1,...,N. (8)

i----1 zl i----1 1

This forms the linear algebraic system of equations

N

__. Akiwi = g_ for k -- 1, ..., N. (9)
i=1

In its present form Ak/ of Eq. (9) is singular and must be modified by the initial

condition. The initial condition may be written as

N

¢, (_1)wi- gl -" 1. (10)
i=l

The weights wi can then be evaluated directly from the solution of Eq. (9). Notice that

the initial condition could have been partially satisfied by wl and the value of a would have

been determined to satisfy the remainder (i.e. gl = 0.5 and a = 0.5)

Comparison of the network approximation with the exact solution of Eq. (4) is shown

in Fig. 5 for forty two hidden processing elements (twenty one output weights).

Example: Third Order Nonlinear Ordinary Differential Equation

As a further demonstration of the approximation capability of the network, a feedforward

network of one input and output node, and a single hidden layer, was constructed to

approximate the solution to the nonlinear third order ordinary differential equation known

as the Blasius equation [17]. The Blasius equation is used to describe the steady and

laminar two-dimensional flow of a viscous Newton/an fluid about a flat plate:

d°f
=

0
drf

with boundary conditions

dff(O) = (0) = O, _--_(r/---+oo) = I

(11)

The network approximation (Fig. 6), using fifty one output weights, is compared against

a fifth order Runge-Kutta solver (finite difference) of variable step size that satisfied the

boundary conditions with an absolute error value of 10 -_. Figure 7 illustrates the rate of

convergence of the network using the L2 norm of the error and the interval spacing h.

21-8

PARTIAL DIFFERENTIAL EQUATIONS

The author has successfully programmed Higher Order Networks, also known as Sigma-Pi

networks, to approximate the solution of a partial differential equation [16].

Example: Linear Elliptic Partial Differential Equation

A Sigma-Pi network of two inputs, one output node, and a single hidden layer has been

constructed to approximate the solution to the linear elliptic equation that models fully

developed steady flow of viscous Newtonian fluid through a duct of square cross-section:

_2U (_2 U

Ox----_ + _ + 1.0 = 0.0 (12)

where u is the nondimensionalized velocity of the flow along the duct.

The domain (f/) of the problem is: -1.0 _< z < 1.0, -1.0 < y < 1.0

Boundary conditions: u = 0 along the perimeter I"

Figures 8 and 9 show the surfaces made by the exact solution and the network solution

of Eq. (12) for two thousand five hundred output weights. Figure 10 illustrates the rate of

convergence of the network using the root mean square of the error and the interval spacing
h.

REFERENCES

[1]Barron, A.R. and Barron, R.L., "Statistical learning networks: a unifying view," Sym-

posium on the Interface: Statistics and Computing Science, Reston, Virginia, April
1988.

[2] Omohundro, S., "Efficient algorithms with neural network behaviour," Complez Sys-
tems, 1, 237, 1987.

[3]Poggio, T. and Girosi, F., "A Theory for Networks for Approximation and Learning,"

Artificial Intelligence Laboratory, Massachusetts Institute of Technology, A.I. Memo
No. 1140, July 1989.

[4]

[5]

Girosi, F. and Poggio, T., "Networks for learning: a view from the theory of approx-

imation of functions," Proceedings of the Genoa Summer School on neural networks

and their applications, Prentice Hall, 1989.

Atkinson, K.E., An Introduction to Numerical Analysis, John Wiley & Sons, New
York, 1989.

[6] Fletcher, C.A.J., Computational Galerkin Methods, Springer-Verlag, New York, 1984.

[7] Finlayson, B.A., The Method of Weighted Residuals and Variational Principles, Aca-
demic Press, New York, 1972.

21-9

[8] Freeman, J.A. and Skapura, D.A., Neural Networks: Algorithms, Applications, and

Programming Techniques, Addison-Wesley Publishing, 1991.

[9] Hecht-Nielsen, R., Neurocomputing, Addison-Wesley Publishing, 1990.

[10] Maren, A., Harston, C. and Pap, R., Handbook of Neural Computing Applications, 48,

Addison-Wesley Publishing, 1990.

[11] Cybenko, G. "Approximation by Superposition of a Sigmoidal Function," Math. Con-

trol Signals Systems, 2,303-314, (1989).

[12] Elanayar, S. and Shin, Y. C., "Approximation Capabilities of Radial Basis Func-
tion Neural Networks, _ Intelligent Engineering Systems Through Artificial Neural Net-

works, Vol. 2, pp. 291-298, ASME Press, New York, 1992.

[13] Park, J. and Sandburg, I. W., "Universal Approximation Using RaAial Basis Function

Networks," Neural Computation, 3, 246-257, 1991.

[14] "Solution of Ordinary Differential Equations by Programmable Feedforward Neural

Networks," To be submitted, 1993.

[15] Mikhlin, S. G., Variational Methods in Mathematical Physics, Pergamon, Oxford,

1964.

[16] "Solution of Elliptic, Parabolic and Hyperbolic Partial Differential Equations by Pro-

grammable Feedforward Neural Networks, _ To be submitted, 1993.

[17] White, Frank M., Viscous Fluid Flow, McGraw-Hill, New York, 1974.

21-10

Bias

x J

InputNode

u(x)
OutputNode

HiddenNodes

0i : Bias weight for the /fhhidden node.

a i :Input weight for the /a hidden node.

wi : Output weight for the _ hiddea node.

o : Bias weight for the outputnode.

Figure 1: Feedforward Network Architecture

-1

_I+i

/ V

Figure 2: Piecewise Polynomial Transfer Function

Figure 3: Distribution of Transfer Functions

21-11

_)l- S l _+S

!

Figure 4: Transfer Function Offset

Lq

2_

$2

1.1

1.4

1.2

_ _ v v

O2 0.4 O.I OJI

Figure 5: Comparison of Exact Solution and Network Approximation of Eq.

output weights

(4) for 21

O3

0.4_

0.4

0.35

,_ O.a

Ol

0.1t

0.1

0._

............... !... !............

g

Figure 6: Comparison of Runge-Kutta Solution and Network Approximation of Eq. (11),

for 51 output weights

21-12

1o'

.............._........_......i...._..._.-.i..L_..:,..............>......._.--.._...._...i..-.:.._..;.,

......................_....!....!_ !!.1._........................._:..._.._.

..............,........i....i...i--+-.!..._.i._......................_..._ .i...i....ii..

......................_ii_i!i_.............".......i_!iiil

......................_....!...!.._..!..!.!..:...........................+.:....;..+..:.._

|'°" !!!!!!!!!!!!!! _:,i!!!!!!!!!::::::!!!!_!::!::!!!!::::::::: !

t iiiiiiii,.i,iiiiii.............. _....... $.....i.. -.i •..i. -.i..i-i..'., :........ i.... •_..-. <'...;..._..i--;.

1o' Io" Io'
l,=l_h)

Figure 7: Convergence Rate of Network for Eq. (11)

AnaJ1_ Solu_on For Poinon's Equl_lo_

0.3,

02S

02.

0.1S.

0.1.

O.OS.

O=
1

0.$

Y -I -I

I

-O.S

X

Figure 8: Analytic Solution of Eq. (12)

21-13

Hard Limit Solution For Poiuon', Equ_iofl

03,

025,

02,

0.15,

0.1,

0.05,

O:
1

-1 -1
-O.5

0

Figure 9: Network Solution of Eq. (12) for 2500 output weights

::

:::

........... _...... i....._...t ._...i -t ;-; ; ;....._.. ".._..;-_-_.

! i i i iiiii _ : ! i !i'i
10 == .:::::;;::;":';":"

g
W

4 i i i i _': i " i i i i!i
10 ":'===

.:,;; :. ;.• • ..;" • • .;'- -:""1- "<-{ :'......) •.. ,:..+ ":-- ":"' I • ":"":"

........... _...... ._...¢..;....;.,.'-t_ _...... ; • ••._.•-,.'.._..•i- _-,.'.

..........._i_i _i_ii._......ili:,..._.... _..;.i.i.i ';...... :,...'_.._.._..i.-_.ii_ili

,o i !!!!i!!ii[i i l i!ii
10 4l 10 "1 10 I

tomb)

Figure 10: Convergence Rate of Network for Eq. (12)

21-14

